读史使人明智,欢迎您访问爱历史网(ilishi.com.cn)
首页 > 历史故事 > 历史探索 > 超新星遗迹是什么

超新星遗迹是什么

网友 分享 时间: 加入收藏 我要投稿 点赞

超新星遗迹其实可以算作行星状星云的一种,但在物理特性上与普通的行星状星云有所不同。著名的蟹状星云就是超新星的遗迹。

产生这个星云的超新星爆发于1054年,当时看到的人很多,并被中国古代的天文学家记载下来。 超新星爆发时﹐恒星的外层向周围空间迅猛地抛出大量物质,这些物质在膨胀过程中和星际物质互相作用,形成丝状气体云和气壳,遗留在空间,成为非热射电源,这就是超新星遗迹。

恒星的残骸可演化为中子星、白矮星或黑洞。1976年D.H.克拉克等所列的射电源表中有120个超新星遗迹﹐绝大部分是银河系内的射电源。

光学特征

大多数超新星遗迹具有丝状的亮云或壳层。根据自行和视向速度得知﹐丝状物都沿径向向外膨胀﹐不同的丝状物有不同的膨胀速度﹐例如仙后座A内就有快速运动(6﹐000公里/秒)和慢速运动(30公里/秒)的丝状物。观测丝状物的光谱可得到其密度﹑温度和化学组成等资料。

分布特点

统计表明﹐从银心到26000光年以内﹐线直径小于98光年的超新星遗迹面密度近似一常数(每千万平方光年约0.5个)。离银心26000光年以外,其面密度迅速下降,到33000光年时,下降到上述常数值的一半。离银心52000光年以外就没有超新星遗迹了。

另外﹐这种遗迹有明显地集中于银道面的倾向﹐离银心愈近﹐旋臂上容易出现超新星遗迹。遗迹的分布和银河系星族 I恒星的分布类似。这使许多研究者认为﹐超新星爆发前的星体多数是属于星族I的恒星。

迄今研究得最详细的超新星遗迹是蟹状星云。

射电特征

各种射电波段上的亮温度分布观测表明﹐超新星遗迹都具有壳层结构﹐即源的外层辐射强﹐向内迅速减弱。普遍认为其辐射性质是相对论性电子的同步加速辐射。

1960年﹐什克洛夫斯基首先根据这种非热辐射机制指出,超新星遗迹的表面亮度Σ 和直径d 间存在著Σ d 的演化关系( 是负值常数﹐有人取为-4.0),并准确地预言了仙后座A射电源流量密度随时间递减的规律。超新星遗迹的辐射是偏振的﹐但偏振度不大,对应的磁场强度一般在10~10高斯的量级上。

表徵射电流量密度S 随频率变化S的射电频谱指数α 一般在 0.12~0.8之间﹐平均为0.5。

分类

超新星遗迹根据形态,可以大致分为三类:壳层型(S型)、实心型(F型或Plerionic,又称类蟹状星云型)和复合型(C型,三类超新星遗迹中发生的物理过程有很大不同。某些超新星遗迹兼具不同类型的特点,如SS 433所处的超新星遗迹W50(G39.7-2.0),因此在分类上具有很大的不确定性。

壳层型

壳层型超新星遗迹最明显的特点是具有壳层结构,中央没有致密天体的辐射源。这一类在已发现的超新星遗迹中占到80%以上。著名的第谷超新星(SN 1572)、开普勒超新星(SN 1604)、SN 1006的遗迹都属于此类型。其壳层结构反映了超新星爆发时抛射出的物质与周围星际介质的相互作用。其光谱在X射线和光学波段大多具有热辐射的形式,在射电波段表现为非热幂率谱。

实心型

实心型超新星遗迹又称类蟹状星云型,其原型是著名的蟹状星云。这一类超新星遗迹没有壳层结构,中央具有致密天体提供能量,其光谱在X射线和射电波段上均表现为非热幂率谱,是相对论性电子的同步辐射产生的。在20世纪70年代以前,这类超新星遗迹只发现了蟹状星云一个,70年代以后陆续发现3C58等也属于此类型。

复合型

复合型超新星遗迹结合了壳层型和实心型的特点,既具有提供能量的中央致密天体,又具有抛射物与星际介质作用形成的壳层结构,典型的天体是船帆座超新星遗迹。这一类超新星遗迹又可以分为热型和实心型两类,热型在射电波段表现为壳层状,在X射线波段表现为实心状;实心型在射电和X射线波段都表现为实心形态。

221381
领取福利

微信扫码领取福利

超新星遗迹是什么

微信扫码分享